Chelator-Induced Disappearance of Carboxylate Stretching Vibrational Modes in S₂/S₁ FTIR Spectrum in Oxygen-Evolving Complex of Photosystem II[†]

Yukihiro Kimura* and Taka-aki Ono*

Laboratory for Photo-Biology(1), RIKEN Photodynamics Research Center, The Institute of Physical and Chemical Research, 519-1399 Aoba, Aramaki, Aoba, Sendai 980-0845, Japan

Received June 12, 2001; Revised Manuscript Received August 20, 2001

ABSTRACT: Fourier transform infrared (FTIR) spectroscopy has been applied toward studies of photosynthetic oxygen evolution, especially on the effects of Ca²⁺ depletion and chelating agents using S₂/S₁ FTIR difference spectrum in the mid-IR region. Ca²⁺ depletion showed little influences on the symmetric (1365/1404 cm⁻¹) and the asymmetric (1587/1562 cm⁻¹) stretching bands of a carboxylate, which are typical of the S_2/S_1 vibrational features induced by the oxidation of the Mn-cluster; however, minor changes were observed in the amide regions. Addition of a chelating agent (EDTA or EGTA) to the Ca²⁺-depleted membranes resulted in the disappearance of the carboxylate bands concurrent with large modifications of the amide bands with an apparent K_d value of approximately 0.49 mM (for EDTA). The carboxylate bands and the greater part of the amide bands were restored by the replenishment of CaCl2, and the chelators did not affect the spectrum in the nondepleted control membranes, indicating that the effects of the chelator are reversible and manifest only in the cases in which the Ca²⁺ site is unoccupied by Ca²⁺. Ca²⁺-depleted membranes showed the normal S₂Q_A⁻ thermoluminescence band, and further addition of EDTA did not show any effects on the peak temperature and peak intensity. Moreover, the Ca²⁺-depleted membranes in the presence of EDTA exhibited the S₂ multiline EPR signal with nearly the normal hyperfine splittings. These results demonstrated that the Mn-cluster is oxidized to the S2 state with normal redox and magnetic properties in the presence of the chelator despite the loss of the carboxylate bands in the FTIR spectra. The results are interpreted as indicating that the chelator interacts with the Mn-cluster as a replacement of the native carboxylate ligand. This prevents the structural changes of the Mn-cluster and protein backbone which are induced upon the oxidation of the Mn-cluster up to the S2 state, but preserve the redox and magnetic properties of the S₂ state Mn-cluster. The roles of Ca²⁺ in the photosynthetic oxygen evolution are also discussed.

Photosynthetic oxygen evolution is performed by an oxygen-evolving complex (OEC) in photosystem (PS)¹ II. The process involves the light-driven oxidation cycling through the five intermediate states which are labeled as S_n (n = 0-4) (1, 2). The catalytic center of OEC comprises a tetranuclear manganese cluster located in the lumenal side of the D1 protein. The OEC is cumulatively oxidized by one equivalent for each step between the S_0 to S_4 states and is reduced during the S_4 to S_0 transition concurrent with the

release of a molecular oxygen, although the Mn-cluster may not be directly oxidized for steps between the S_2 to S_4 states (reviewed in refs 3-7). Both Ca^{2+} and Cl^- are involved as inorganic cofactors necessary for the catalytic activities for O_2 evolution (3). Recently, the X-ray crystallographic structure of the PS II protein complex was reported (8); however, the resolution was insufficient in providing details of the ligation structure of the Mn-cluster and did not shed much insight into the mechanism of water oxidation.

In recent years, FTIR spectroscopic studies, both in the mid-frequency region $(2000-1000 \text{ cm}^{-1})$ and in the low-frequency region $(1000-350 \text{ cm}^{-1})$, have been applied to examine the molecular structure of the Mn-cluster and the mechanism of O_2 evolution (reviewed in ref 9). The S_2/S_1 FTIR difference spectrum in the mid-frequency region shows, in addition to the amide I and amide II bands, characteristic bands that correspond to the frequencies of carboxylate stretching vibrations (10-16, 28). When carbon atom was uniformly labeled by 13 C, shifts in these bands were observed (14). The carboxylate bands have been ascribed to the carboxylate ligand associated with the Mn-cluster, although the amino acid residues responsible for the band formation are not determined (17). The appearance of the carboxylate

[†]This research was supported by grants for the Frontier Research System at RIKEN and Grant-in-Aid for Scientific Research (13640659) (to T.O.) from MECSST of Japan.

^{*} To whom correspondence should be addressed. Tel: +81 (22) 228 2047. Fax: +81 (22) 228 2045. E-mail: ykimura@postman.riken.go.jp, takaaki@postman.riken.go.jp.

¹ Abbreviations: OEC, oxygen-evolving complex; PS, photosystem; Chl, chlorophyll; Q_A, primary quinone acceptor of photosystem II; Q_B, secondary quinone acceptor of photosystem II; Y_Z, redox active tyrosine of the D1 protein; Y_D, redox active tyrosine of the D2 protein; EXAFS, extended X-ray absorption fine structure; EPR, electron paramagnetic resonance; TL, thermoluminescence; FTIR, Fourier transform infrared; DCMU, 3-(3,4-dichlorophenyl)-1,1-dimethylurea; MES, 2-morpholinoethanesulfonic acid; EDTA, ethylenediamine-N,N,N',N'-tetraacetic acid; EGTA, O,O'-bis(2-aminoethyl)ethyleneglycol-N,N,N',N'-tetraacetic acid; Quin2, 8-amino-2-[(2-amino-5-methylphenoxy)methyl]-6-methoxyquinoline-N,N,N',N'-tetraacetic acid, tetrapotassium salt.

bands in the different spectrum indicates that structural changes of the putative carboxylate ligand occur during the S_1 to S_2 transition. Two negative bands (1403 and 1560 cm⁻¹) with an energy difference of 157 cm⁻¹ were assigned to the symmetric (ν_s) and the asymmetric (ν_{as}) stretching vibrations of the carboxylate in the S₁ state, respectively. Whereas, two positive bands (1364 and 1587 cm⁻¹) with an energy difference of 223 cm $^{-1}$ were assigned to $\nu_{\rm s}$ and $\nu_{\rm as}$ modes of the carboxylate in the S2 state, respectively. On the basis of the general criteria for the determination of the coordination structure in metal-ligand systems from the frequency difference $\Delta \nu$ (= $\nu_{\rm as} - \nu_{\rm s}$) between the asymmetric and the symmetric vibrational modes (18, 19), it has been claimed that the carboxylate is in a bidentate coordination structure in the S₁ state and in an unidentate coordination structure in the S_2 state (11). Moreover, it has been proposed that the carboxylate serves as a bridge between the redox-active Mn ion and Ca²⁺ in the S₁ state, and since the carboxylate bands disappear in the Ca²⁺-depleted membranes, the coordination bond between Ca²⁺ and the carboxylate is released upon the formation of the S_2 state (11). In contrast, previously reported S₂/S₁ spectra of the Sr²⁺-supplemented PS II membranes did not indicate any shifts of the symmetric carboxylate band at 1404 cm⁻¹ (9), thus reducing the likelihood of the bridging coordination model of the carboxylate between Ca²⁺ and the redox-active Mn.

The presence of Ca²⁺ in a close proximity to the Mn-cluster was demonstrated by Mn XAFS studies using native PS II membranes (20–23) and by Sr XAFS studies using the Sr²⁺-substituted PS II membranes (24). Additionally, recent solid-state ¹¹³Cd NMR studies of ¹¹³Cd-substituted PS II membranes confirmed that Ca²⁺-binding site is in the vicinity of the Mn-cluster, close enough to be affected by its electron spin state (25). In contrast, alterations in the Mn EXAFS Fourier peak at 3.3 Å were not detected when Ca²⁺ was replaced with Sr²⁺ or Dy³⁺, suggesting that the distance between the Ca²⁺-binding site and the Mn-cluster is further than 3.3 Å (26). Furthermore, EPR experiments for Mn²⁺-supplemented PS II membranes indicated that the Ca²⁺-site occupied by Mn²⁺ is located outside the first coordination sphere of the Mn-cluster (27).

The carboxylate stretching modes are prominent not only in the S_2/S_1 difference spectrum but also in the S_3/S_2 difference spectrum (15, 16), although different carboxylate ligands may be responsible for each spectrum. Therefore, further studies of the carboxylate modes may provide insight toward understanding the molecular structure of the Mncluster and mechanism of O₂ evolution including the function of Ca²⁺. In this paper, we report the behaviors of the carboxylate stretching bands in the light-induced S₂/S₁ FTIR difference spectrum of PS II membranes subjected to Ca²⁺ depletion and addition of chelating agents. In contrast to a previous report (11), our results showed that the effects of Ca^{2+} depletion on the characteristic S_2/S_1 difference vibrational structure, including the carboxylate bands, were insignificant. However, addition of exogenous chelating agent (EDTA or EGTA) markedly suppressed the light-induced spectral changes, despite not having any apparent effects on the redox property or magnetic structure of the Mn-cluster in the S_2 state. On the basis of these and other findings, possible ligation mode of the carboxylate residue to the Mncluster was proposed.

MATERIALS AND METHODS

Sample Preparations. BBY-type O₂-evolving PS II membranes (29) were prepared from spinach with modifications (30) and stored in liquid N₂ until use. After thawing the samples, the membranes were washed using a medium containing 400 mM sucrose, 20 mM NaCl, and 20 mM Mes/ NaOH (pH 6.5) and then suspended in the same medium. For Ca²⁺ depletion, the membranes were suspended in a medium containing 2 M NaCl, 400 mM sucrose, and 20 mM Mes/NaOH (pH 6.5) at 0.5 mg of Chl/mL and treated at 0 °C for 25 min under weak light with gentle agitation. The following procedures were carried out under complete darkness or dim green light unless otherwise noted. Chelex 100 (100–200 mesh) was added to the membrane suspension (0.018 g of Chelex 100/1 mg of Chl) to remove any free Ca²⁺ ions from the suspension. The pH of the Chelex bed had been adjusted to pH 6.5 using HCl, followed by extensive washing using MILLI-Q water. After incubation at 0 °C for 10 min, the membranes were washed twice using a medium containing 400 mM sucrose (Sigma Ultra), 20 mM NaCl, and 20 mM Mes/NaOH (Aldrich 99.998%), pH 6.5 (medium A), in the presence of Chelex 100, and suspended in Chelex 100-treated medium A. The resulting Ca²⁺depleted membranes were further incubated at 0 °C for at least 3 h under complete darkness, and then stored in liquid N₂ until use. All wears for sample preparations were rinsed with acid before use.

The membrane samples for the FTIR measurements were suspended in Chelex-treated medium A (0.5 mg of Chl/mL). In the case where chelating agents or Ca²⁺ at the indicated concentration was added, the suspensions were further incubated at 0 °C for 5 min under darkness. Addition of Ca2+ was as chloride salt. DCMU was added to the suspension at 0.1 mM for the $S_2Q_A^-/S_1Q_A$ spectrum; 0.1 mM DCMU and 10 mM NH₂OH were added for the Q_A⁻/Q_A spectrum. The membranes were precipitated by centrifugation for 30 min at 176000g, the resulting pellet was sandwiched between a pair of ZnSe disks. All sample manipulations for FTIR were performed under complete darkness with the use of a NightVision binocular (KOKUSEN D-2MV I) equipped with 800 nm cut-on filter. For EPR measurements, the membrane samples suspended in the Chelex-treated medium A (0.5 mg of Chl/mL) were supplemented with EDTA at the indicated concentration and 0.1 mM DCMU (50 mM dimethyl sulfoxide solution as stock). The membranes were precipitated by centrifugation, resuspended in the supernatant (approximately 4 mg of Chl/mL), and transferred to Spracil quartz EPR tubes.

Measurements. FTIR spectra were recorded on a vacuum-type spectrophotometer (Bruker IFS-66v/s) equipped with an MCT detector (EG&G OPTOELECTRONICS, J15D16-M204B−S01M-60-D316/6) and a cryostat (Oxford, Optistat DN1704) at 250 K. A custom-made CdTe band-pass filter (2000−350 cm⁻¹) was placed in front of the sample to eliminate the He−Ne laser scatter, which leaks from the interferometer compartment and to improve the signal-to-noise ratio. Sample temperature was controlled with a temperature controller (Oxford, ITC-502). For sample illumination, the cold light (HOYA-SCHOTT HL150R) passing through a long-path filter (≥ 620 nm) was fed into the cryostat through a quartz window, which was placed in a

direction perpendicular to the monitoring light. Each singlebeam spectrum was measured at 4 cm⁻¹ resolution by averaging 300 scans (130 s accumulation). Four difference spectra in different samples were averaged to improve the signal-to-noise ratio.

Low-temperature X-band EPR spectra were measured using a Bruker E580 EPR spectrometer equipped with an Oxford-900 continuous flow cryostat with a temperature control system (Oxford, CF935). The membrane samples were illuminated from both sides at 250 K for 60 s using 650 W projectors.

Thermoluminescence was measured using a homemade apparatus. The membrane samples (0.25 mg of Chl/mL) were illuminated at 250 K with CW-light passing through a longpass filter (≥ 630 nm) for 5 s and rapidly cooled in liquid N₂; the resulting light emission during warming was recorded (30). Each sample included 50 μ M DCMU (dissolved in dimethyl sulfoxide as stock solutions) to ensure a single turnover from the S_1 to the S_2 state. Oxygen-evolving activity was measured at 25 °C using a Clark-type O2 electrode in the presence of 0.25 mM phenyl-p-benzoquinone as an electron acceptor (30).

 Ca^{2+} Determination. The concentrations of free Ca^{2+} in buffer solutions and sample suspensions were determined fluorometrically using a Ca²⁺-sensitive fluorescence probe, Quin2. For the sample suspension, the Ca²⁺ amounts in the supernatant were determined after precipitating the membranes by centrifugation. Fluorescence of the Quin2-Ca²⁺ complex was measured at 500 nm with excitation at 339 nm (31, 32) using a fluorescence spectrophotometer (HITACHI, F-4500).

RESULTS

Figure 1 shows the effects of Ca²⁺ depletion on the S₂/S₁ difference spectrum of PS II membranes. The S₂/S₁ spectra were obtained by subtracting the Q_A⁻/Q_A difference spectrum from the S₂Q_A⁻/S₁Q_A difference spectrum after normalizing both $S_2Q_A^-/S_1Q_A$ and Q_A^-/Q_A spectrum with respect to the intensity of the CO stretching band of Q_A⁻ at 1479 cm⁻¹. DCMU was added for the $S_2Q_A^-\!/S_1Q_A$ spectrum as an inhibitor of the electron transfer from QA to QB. NH2OH and DCMU were added for the QA-/QA spectrum as an exogenous electron donor and as the inhibitor, respectively (10, 33). The double difference spectrum of the nontreated control PS II membranes showed the characteristic vibrational feature of the S_2/S_1 difference spectra at 1365(+)1404(-) cm⁻¹ for the symmetric and at 1587(+)/1562(-)cm⁻¹ for the asymmetric stretching vibrations of the carboxylate ligand for the Mn-cluster. Additionally, the spectrum showed the pronounced differential bands appearing in the $1690-1630~\text{cm}^{-1}$ (amide I) and $1590-1515~\text{cm}^{-1}$ (amide II) regions, which correspond to the conformational change of the backbone protein upon the S₁ to S₂ transition (Figure 1a). The present double difference spectrum closely resembles the single-pulse induced S₂/S₁ spectrum of the nontreated membranes in the presence of ferricyanide/ ferrocyanide (11, 12). It has been previously reported that the carboxylate stretching bands disappear from the spectrum of the membranes that were depleted of Ca²⁺ using low-pH treatment (11). To the contrary, as shown in Figure 1b, the carboxylate bands were decisively evident in our Ca²⁺-



FIGURE 1: Light-induced S₂/S₁ difference spectra of PS II membranes that are (a) untreated, (b) Ca²⁺-depleted, and (c) Ca²⁺replenished. For Ca²⁺ replenishment (c), Ca²⁺-depleted sample membranes were supplemented with 20 mM CaCl₂ and incubated at 0 °C for 5 min. Each S₂/S₁ difference spectrum was obtained by subtracting the Q_A^-/Q_A difference spectrum from the $S_2Q_A^-/S_1Q_A$ difference spectrum (see text for details). Membrane samples were illuminated with continuous light (2 mW/cm²) at 250 K for 10 s. Sample suspension included 0.1 mM DCMU for the S₂Q_A⁻/S₁Q_A difference spectrum, or 0.1 mM DCMU and 10 mM NH₂OH for the Q_A⁻/Q_A difference spectrum. A dark minus dark FTIR spectrum (d) was presented to show a noise level.

Table 1: Effects of Addition of Ca2+ or EDTA on the O2-Evolving Activity

PSII membrane	O_2 -evolving activity μ mol of O_2 (mg of Chl) ⁻¹ h ⁻¹		
	no addition	+20 mM CaCl ₂	+1 mM EDTA
nontreated NaCl/light-treated	602 (93) ^a 105 (16)	646 (100) 521 (81)	602 (93) 106 (16)

^a Numbers in parentheses represent the oxygen-evolving activity in relative %.

depleted membranes, although the O₂-evolving activity was inhibited in the depleted membranes as shown in Table 1. Replenishment of Ca²⁺ restored the inhibited O₂ evolution (up to 80%) but did not affect the carboxylate bands (Figure 1c). The amide I and II bands were somewhat modified by Ca²⁺ depletion but were not restored by the replenishment of Ca²⁺ (Figure 1c). Therefore, these changes can be attributed to some anomalous effects induced by the highsalt washing. It is of note that overlapping large absorption bands due to the backbone protein matrixes and the presence of water create difficulties in allowing detailed analyses of the spectra.

Figure 2 shows the S_2/S_1 difference spectra of the Ca^{2+} depleted PS II membranes with (a) no-addition, (b) addition of 1 mM EDTA, (c) addition of 1 mM EGTA, and (d) addition of 1 mM EDTA followed by 20 mM CaCl2. As

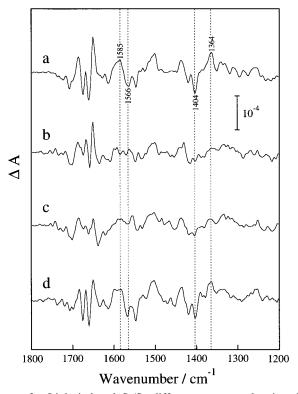


FIGURE 2: Light-induced S_2/S_1 difference spectra showing the effects of chelating agents on Ca^{2+} -depleted PS II membranes with (a) no-addition, (b) addition of 1 mM EDTA, (c) addition of 1 mM EGTA, and (d) addition of 1 mM EDTA followed by 20 mM CaCl₂. For (d), the membranes were incubated with 1 mM EDTA at 0 °C for 5 min, then 20 mM CaCl₂ was added. Each S_2/S_1 difference spectrum was obtained by subtracting the Q_A^-/Q_A difference spectrum from the $S_2Q_A^-/S_1Q_A$ difference spectrum (see text for details). Membrane samples were illuminated with continuous light (2 mW/cm²) at 250 K for 10 s. Sample suspension included 0.1 mM DCMU for the $S_2Q_A^-/S_1Q_A$ difference spectrum, or 0.1 mM DCMU and 10 mM NH₂OH for the Q_A^-/Q_A difference spectrum.

shown in Figure 2b, addition of 1 mM EDTA significantly affected the typical features of the S₂/S₁ spectrum; in particular, the carboxylate bands at 1364(+)/1404(-) cm⁻¹ for symmetric and 1585(+)/1566(-) cm⁻¹ for asymmetric vibrations disappeared concomitant with considerable abolishment of the bands in the amide I and II regions. Similar effects were observed for the spectrum of the sample supplemented with 1 mM EGTA (Figure 2c), and it can be suggested that the chelating functions of these chemicals are responsible for their effects on the spectra. Small carboxylate bands that were observed in the EDTA- and EGTA-supplemented spectra can be explained as the residual Ca²⁺-retaining PS II fraction surviving the treatments for Ca²⁺ depletion (see Table 1). In contrast to the carboxylate stretching bands, the chelators did not affect the bands in the 1750-1700 cm⁻¹ region due to carbonyl-stretching ν (CO) modes for protonated acidic amino acid residues (15). The characteristic S₂/S₁ vibrational structure, including the amide I and II bands, which disappeared with the addition of 1 mM EDTA, were recovered by the subsequent replenishment with 20 mM Ca²⁺ (Figure 2d). It should be noted that these effects, which result from the addition of the chelator, were observed only for the sample subjected to Ca2+ depletion, since no spectral changes were induced

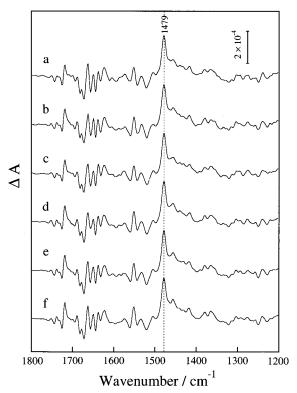


FIGURE 3: Light-induced Q_A^-/Q_A difference spectra of (a) untreated PS II membranes with 20 mM CaCl₂, and Ca²⁺-depleted PS II membranes with (b) no-addition, (c) addition of 20 mM CaCl₂, (d) addition of 1 mM EDTA, (e) addition of 1 mM EGTA, and (f) addition of 1 mM EDTA followed by 20 mM CaCl₂. Each spectrum was normalized with respect to the intensity of the Q_A^- band at 1479 cm⁻¹. Membrane samples were illuminated with continuous light (2 mW/cm²) at 250 K for 10 s. Sample suspension included 0.1 mM DCMU and 10 mM NH₂OH.

by the chelator in the nontreated control membranes (data not shown).

Figure 3 shows effects of Ca^{2+} depletion and the following addition of a chelator on the Q_A^{-}/Q_A difference spectra. It was evident that the variously treated membrane samples provided very similar Q_A^{-}/Q_A spectra; in particular, changes were not observed for the amide I and II bands, of which formation was significantly inhibited by the chelator in the S_2/S_1 difference spectrum. These results indicate that Q_A and its surrounding protein structure are not affected by these treatments. Therefore, the acceptor side of PS II does not contribute to the changes of the S_2/S_1 double difference spectrum induced by Ca^{2+} depletion and chelator.

Figure 4 shows the effect of EDTA concentration of the medium on the suppression of the band intensity of the symmetric carboxylate stretching vibration at 1404 cm⁻¹ in Ca^{2+} -depleted PS II membranes. The intensities of the negative band at 1404 cm⁻¹ in the $S_2Q_A^-/S_1Q_A$ spectrum (shown in the inset figure) were plotted as a function of the EDTA concentration. Evaluation of the band intensities using the $S_2Q_A^-/S_1Q_A$ difference spectra afforded a higher precision than using the double difference spectra. The band intensities at 1404 cm⁻¹ decreased with EDTA concentration to reach the low plateau level at 1 mM EDTA. The residual band intensities at the higher EDTA concentrations were due to the nondepleted PS II fraction present in the Ca^{2+} -depleted membrane samples and to the small contribution of Q_A^-/Q_A spectrum at this wavenumber. If we assumed that EDTA is

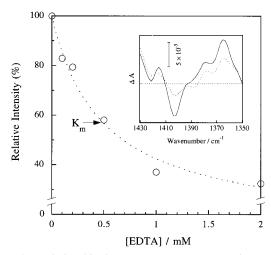


FIGURE 4: Relationship between EDTA concentration and the disappearance of the symmetric carboxylate band at 1404 cm⁻¹ for Ca²⁺-depleted PS II membranes. Intensities of the symmetric carboxylate bands were estimated using the negative band at 1404 cm⁻¹ in the S₂Q_A⁻/S₁Q_A difference spectra since contribution of Q_A^{-}/Q_A bands is minimal at this wavenumber (see text for details). Each S₂Q_A⁻/S₁Q_A difference spectrum was normalized with respect to the intensity of the Q_A^- band at 1479 cm⁻¹. The apparent K_d value of 0.49 mM was calculated from the dashed curve, which was fitted over the experimental data. Inset shows the $S_2Q_A^{\,-}\!/S_1Q_A$ difference spectra in the absence (solid line) and in the presence of 1 mM EDTA (dashed line). For other experimental conditions, see the legend in Figure 1.

associated to the OEC in interrupting the generation of the S_2/S_1 bands, the apparent dissociation constant was calculated as 0.49 mM.

One possible suggestion to explain the effect of the chelators is simply their capacity to eliminate the free Ca²⁺ ions that contaminate in the sample suspension; the contaminated Ca²⁺ is bound to the Ca²⁺ site to restore the normal S₂/S₁ spectrum in the absence of a chelator. However, this was apparently not the case since Ca²⁺ quantification in the buffer mediums and in the sample suspension for FTIR measurements showed that the Ca²⁺ concentration was lower than the detectable limit ($<0.2 \mu M$) of the Ca²⁺-sensitive fluorescence probe. The value was significantly lower than the EDTA concentration required for the suppression of the FTIR band formations that are shown in Figure 4. We also examined the possibility of Ca²⁺ contamination during the FTIR measurements, and the result indicated that release of Ca^{2+} (<0.2 μ M) to the reaction medium that was sandwiched between ZnSe disks was not detected even after incubation for 2 h at room temperature. These results clearly demonstrated that the effects of the chelators are not simply due to the elimination of free Ca²⁺ in the sample suspension.

Figure 5 shows the effect of Ca²⁺ depletion and chelator addition on the TL glow curves of Ca2+-depleted PS II membranes. Sample membranes were illuminated with CWlight at 250 K in the presence of 50 µM DCMU, which ensured a single turnover of PS II from the S₁ to the S₂ state. Sample membranes that were Ca²⁺-depleted, EDTA-supplemented, and Ca²⁺-replenished showed the same TL Q-band arising from the charge recombination of an S₂Q_A⁻ charge pair (34). The results indicated that the S_2 state formed in the Ca²⁺-depleted membranes retains the normal redox properties. We did not detect any effects on the S2 properties and the yield of S₂-formation from the presence of a chelator,

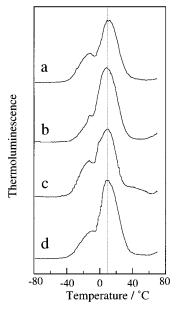


Figure 5: Thermoluminescence glow curves for Ca²⁺-depleted PS II membranes with (a) no-addition, (b) addition of 20 mM CaCl₂, (c) addition of 1 mM EDTA, and (d) addition of 1 mM EDTA followed by 20 mM CaCl₂. Membrane samples (250 µg of Chl/ mL) were illuminated with continuous light at 250 K for 5 s. Sample suspension included 0.1 mM DCMU. The small shoulder at approximately 0 °C is an artifact due to the influence of melting ice on the heating rate.

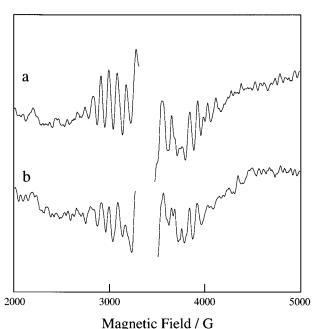


FIGURE 6: S₂ EPR multiline spectra (light minus dark) in Ca²⁺depleted PS II membranes with (a) no addition and (b) addition of 1 mM EDTA. Membrane samples were illuminated with continuous light at 250 K for 1 min. Sample suspension included 0.1 mM DCMU. Instrument settings were temperature, 6 K; microwave power, 0.2 mW; microwave frequency, 9.5 GHz; modulation frequency and amplitude, 100 kHz and 15 G, respectively.

even though the chelator resulted in marked modifications in the S_2/S_1 vibrational structure.

Figure 6 shows the EPR spectra of the Ca²⁺-depleted PS II membranes (light minus dark). A sample suspension including 0.1 mM DCMU was illuminated with continuous light at 250 K to allow only the S_1 to S_2 transition. The Ca^{2+} -

depleted membranes without EDTA supplementation generated a multiline S₂ signal (Figure 6a) with spectral features that were indistinguishable from those observed for the nontreated control membranes. The S₂ multiline signal of EDTA-supplemented membranes (Figure 6b) was also similar, although its signal intensities were relatively weaker. These results are compatible with the previous report that the normal multiline signal was generated by the illumination of the Ca²⁺-depleted membranes in the presence of EGTA at 198 K, which is the temperature that interrupts further transition beyond the S₂ state, while the dark-stable modified multiline signal was induced when the Ca²⁺-depleted membranes were illuminated at 0 °C in the absence of DCMU to produce the $S_2Y_Z^+$ state, followed by dark-decay to the S_2 state (39). The reason for the relatively lower multiline amplitude in the presence of EDTA is not clear at present, but might be attributable to the presence of the minor OEC fraction which shows no multiline in the presence of EDTA or the change in the signal saturation characteristics reported previously by Boussac et al. (37, 39). A $g = 4 S_2$ signal was not induced in the Ca2+-depleted membranes with and without EDTA, and was not restored by Ca²⁺-replenishment (data not shown). The results indicate that the magnetic structure of the S₂ state Mn-cluster is normal in both Ca²⁺depleted and EDTA-supplemented membranes, and that the addition of EDTA did not induce any specific modification of the magnetic structure.

DISCUSSION

Effects of Ca^{2+} Depletion. The S_2/S_1 difference spectrum of the low-pH induced Ca²⁺-depleted PS II membranes indicated that the symmetric $(1364(+)/1403(-) \text{ cm}^{-1})$ and the asymmetric $(1589(+)/1561(-) \text{ cm}^{-1})$ stretching bands of the carboxylates were not generated with the appearance of no new bands corresponding to them as reported (11). The carboxylate bands were subsequently almost completely restored by the replenishment of Ca²⁺. On the basis of the Ca²⁺-dependence and the frequency difference between the asymmetric and symmetric vibrational modes, it was proposed that a carboxylate bridging between the redox-active Mn and Ca²⁺ was responsible for the FTIR bands and the coordination mode of the carboxylate changed from the bidentate to the unidentate structure in the S₁ to S₂ transition (11). However, our present study clearly demonstrates that Ca²⁺ depletion does not affect the carboxylate stretching bands in the S_2/S_1 spectrum, indicating that the putative carboxylate bridging between Ca and Mn is not responsible for the carboxylate bands found in the S_2/S_1 spectrum. Our observations are consistent with the finding that Sr²⁺ substitution did not induce any changes of the carboxylate bands in the S_2/S_1 spectrum (ref 9 and unpublished results). We should emphasize within this context that EDTA was always included in the sample suspension of the Ca²⁺depleted membranes in the previous study (11). In addition, the sample suspension of the previous study included 78 mM potassium ions as potassium ferrocyanide and potassium ferricyanide which were used for electron acceptor and redox buffer. K⁺ was found to be bound to the Ca²⁺-site to suppress the S_2/S_1 bands (unpublished data). Therefore, the absence of the carboxylate bands in the previous study is probably caused by the presence of both EDTA and K⁺, although we

cannot completely exclude the effects of the presence of the extrinsic proteins in the low-pH induced Ca²⁺-depleted membranes and/or difference in the procedures for Ca²⁺depletion. If we reconsider, in the light of our present results, the change in the ligation mode of the carboxylate ligand from bidentate to unidentate upon the S₁ to S₂ transition, we can propose that the carboxylate bridges between two Mn ions or, alternatively, chelates one Mn ion in bidentate manner in the S_1 state. However, we cannot distinguish these two types of bidentate structure by the values for the frequency difference $\Delta \nu$ (= $\nu_{as} - \nu_{s}$) between the asymmetric and the symmetric vibrational modes because $\Delta \nu$ largely depends on the ligands (18, 19, 35). Then, one of the coordination bonds is selectively released to cause the appearance of the unidentate structure upon S_2 formation. This coordination change may facilitate the binding of substrate water to the Mn-cluster.

As shown in Figure 1, significant differences were not observed for the S₂/S₁ spectra of the Ca²⁺-depleted membranes before and after $\bar{C}a^{2+}$ replenishment, which restored O₂ evolution. The structural changes of the protein matrixes that were induced by the oxidation of the Mn-cluster proceeded almost normally in the absence of Ca²⁺. Therefore, it is likely that the ligation structure of the Mn-cluster and the protein conformation in the vicinity of the cluster in the absence of Ca²⁺ are comparable to those in the presence of Ca²⁺, in both the S₂ and S₁ states. Furthermore, the redox and magnetic properties of the S2 state Mn-cluster in the absence of Ca²⁺ are indistinguishable from those of the normal S₂ state as indicated by their S₂Q_A⁻ TL band (Figure 5) and their S2 state multiline EPR signal with normal hyperfine structure (Figure 6). To summarize, the Mn-cluster in the Ca²⁺-depleted and native PS II membranes has inherently identical properties in the S_1 and S_2 states, except for the inhibition of O₂-evolving capability. This suggests that Ca²⁺ is not directly involved in the structural changes of OEC induced by the oxidation of the Mn-cluster during the S_1 to S_2 transition, and therefore, Ca^{2+} is likely to play key roles, in states higher than S_2 , which control the ligation structure and redox chemistry of the Mn-cluster necessary for the oxygen evolution as well as the binding of the substrate water. Chu et al. (36) have reported that Sr²⁺substitution affects the vibrational mode at 606 cm⁻¹, which is tentatively assigned to a Mn-O-Mn cluster mode. This Sr²⁺-dependent change of the 606 cm⁻¹ mode may be compatible with the formation of the modified multiline S₂ signal in the substituted membranes (37, 38). FTIR studies in the low-frequency region for the Ca²⁺-depleted samples, which were used in the present study, may provide further insight into the mechanism of water oxidation and Ca²⁺ function in OEC.

Effects of Chelating Agents. Light-induced changes in the FTIR spectra upon the S_1 to S_2 transition were largely suppressed by the addition of EDTA or EGTA to the Ca^{2+} -depleted PS II membranes without appearance of any new band, as shown in Figure 2. The absence of the FTIR bands cannot be explained as the interruption of the S_2 formation by the chelator, since the S_2 formation was demonstrated by the generation of the $S_2Q_A^-$ TL band and by the multiline S_2 signal, as shown in Figures 5 and 6, respectively. The band intensities of the FTIR spectra obtained in the present experimental conditions were not affected by halving the S_2

acquisition time and by doubling the illumination time. Furthermore, the yield of the S₂ formation as measured by TL at various temperatures was not affected by the presence of EDTA (unpublished data). These show that the disappearance of the S_2/S_1 vibrational modes by the chelator is not attributed to an insufficient S2 formation due to a lower quantum yield of the S2 formation or a shorter lifetime of the S₂ state. The chelators did not inhibit the generation of the S_2/S_1 bands for the nontreated control membranes. Therefore, the effects of the chelator may not be caused by nonspecific interaction between the carboxylic groups of the chelator and amino acid residues of OEC. Although the details on the action of the chelator remain to be resolved, we present one possible explanation, which involves the association between the chelator(s) and the Mn-cluster. The association of chelators to the Mn-cluster was previously suggested for Ca²⁺-depleted membranes by CW (37, 39) and pulsed EPR (40). The presence of a chelator has induced the formation of the dark-stable modified S2 multiline signal when Ca²⁺-depleted membranes were illuminated at 0 °C to produce the S₂Y_Z⁺ state in the absence of DCMU. The binding of EGTA to a close vicinity of the Mn-cluster is suggested from the ESEEM data for the Ca2+-depleted membranes obtained from ¹⁴N- and ¹⁵N-labeled material (40). Within this context, it is of note that association between a high-concentration adventitious carboxylic acid, such as citrate, and the Mn-cluster has been suggested by EPR study (39). Our FTIR results indicated that the chelators interact with the Mn-cluster at the S₁ and/or S₂ states, because DCMU was always included in the sample suspension. It is clear that such associations do not significantly influence the magnetic properties of the cluster. Therefore, the mode of interaction between the chelators and the Mn-cluster detected by FTIR may be rather different than those reported by EPR studies. Consistent with this view, the addition of citrate (\sim 40 mM) did not influence the S₂/S₁ spectrum of the Ca²⁺-depleted membranes (data not shown).

On the basis of these considerations, we propose that a chelator interacts with the Mn-cluster as a replacement for the native carboxylate ligand responsible for the generation of the carboxylate stretching bands. In nontreated control membranes, neither O₂-evolving capability nor S₂/S₁ spectra were influenced by the chelator (data not shown), indicating that Ca²⁺-binding interferes with either the access of the chelators to the Mn-cluster, the replacement of the native carboxylate ligand by adventitious carboxylate groups, or both. Since the carboxylate stretching bands were not induced in the chelator-supplemented membranes, the S_1 to S_2 transition was not accompanied by the change of the ligation mode of the chelator. The presence of chelator(s) suppressed the generation of not only the carboxylate stretching bands but also the amide I and II bands, which indicate the structural changes of the protein matrixes upon the oxidation of the Mn-cluster. Therefore, we conclude that the native carboxylate ligand is crucial for inducing the changes of the structure of protein and/or the hydrogen bonding to the peptide backbone during the oxidation of the Mn-cluster. The formation of the normal S2 multiline signal and the normal S₂Q_A⁻ TL band in the EDTA-supplemented membranes suggests that the redox and magnetic properties of the S₂ state Mn-cluster are largely normal in the chelatorsupplemented membranes. Therefore, the ligation geometry

of the Mn-cluster in the S2 state may not be significantly affected due to the presence of the chelators, and if this is the case, the chelator carboxylate may be associated in an unidentate manner with the Mn-cluster in the S1 state. Alternatively, the chelator may be associated in a bidentate manner with the Mn-cluster after the formation of the S₂ state; however, such association would not influence the redox and magnetic properties of the S2 state cluster. Both oxygen and nitrogen atoms of EDTA or EGTA participate in the formation of a stable chelating complex with a metal cation. Therefore, the nitrogen atom may also be involved in the association between EDTA or EGTA and the Mncluster. Furthermore, although supporting experimental data has not vet been reported, we cannot exclude the possibility that the chelator is not associated directly with the Mncluster, but is bound within a close proximity to the cluster to perturb the proper structure of the native carboxylate ligand.

Our discussion is based on the assumption that the carboxylate stretching bands in the S₂/S₁ spectrum reflect the alteration of the ligation structure of the carboxylate ligand. It has been suggested that the frequency difference $(\Delta \nu)$ between the asymmetric and symmetric carboxylate stretching vibrations observed in the S_2/S_1 spectrum may be caused by the valence change of the Mn ion, without any changes in the ligation structure, since the oxo-bridged Mn carboxylate complexes showed various $\Delta \nu$ depending on their oxidation states (41). However, we find it difficult to apply this view into explaining our present observation, in which the carboxylate stretching bands were markedly suppressed despite the normal progress of the oxidation of the Mn-cluster. Additionally, the frequency difference observed in the model complexes with bidentate bridging ligands increased with the reduction of Mn, which contradicts the tendency of the change in the S_2/S_1 spectra. Therefore, it is likely that the change in the oxidation state of the Mncluster itself does not contribute significantly to either the formation of the carboxylate bands or the observed frequency difference between the S_1 and S_2 states.

ACKNOWLEDGMENT

We are thankful to Dr. H. Mino for the kind help during the EPR measurements. We also thank Dr. T. Noguchi for valuable advice for the FTIR measurements.

REFERENCES

- 1. Joliot, P., Barbieri, G., and Chabaud, R. (1969) Photochem. Photobiol. 10, 309-329.
- 2. Kok, B., Forbush, B., and McGloin, M. (1970) Photochem. Photobiol. 11, 457-475.
- 3. Debus, R. J. (1992) Biochim. Biophys. Acta 1102, 269-352.
- 4. Hoganson, C. W., and Babcock, G. T. (2000) Met. Ions Biol. Syst. 37, 613-656.
- 5. Robblee, J. H., Cinco, R. M., and Yachandra, V. K. (2001) Biochim. Biophys. Acta 1503, 7-23.
- 6. Geijer, P., Peterson, S., Åhrling, K. A., Deák, Z., and Styring, S. (2001) Biochim. Biophys. Acta 1503, 83-95.
- 7. Renger, G. (2001) Biochim. Biophys. Acta 1503, 210-228.
- 8. Zouni, A., Witt, H.-T., Kern, J., Fromme, P., Krauss, N., Saenger, W., and Orth, P. (2001) *Nature* 409, 739–743.
- 9. Chu, H.-A., Hillier, W., Law, N. A., and Babcock, G. T. (2001) Biochim. Biophys. Acta 1503, 69-82.

- 10. Noguchi, T., Ono, T.-A., and Inoue, Y. (1992) *Biochemistry* 31, 5953–5956.
- 11. Noguchi, T., Ono, T.-A., and Inoue, Y. (1995) *Biochim. Biophys. Acta* 1228, 189–200.
- 12. Noguchi, T., Ono, T.-A., and Inoue, Y. (1995) *Biochim. Biophys. Acta* 1232, 59–66.
- Zhang, H., Fischer, G., and Wydrzynski, T. (1998) Biochemistry 37, 5511-5517.
- Noguchi, T., Sugiura, M., and Inoue, Y. (1999) in Fourier Transform Spectroscopy (Itoh, K., and Tasumi, M., Eds.) pp 459–460, Waseda University Press, Tokyo, Japan.
- Noguchi, T., and Sugiura, M. (2001) Biochemistry 40, 1497– 1502.
- Hillier, W., and Babcock, G. T. (2001) Biochemistry 40, 1503
 1509
- 17. Chu, H.-A., Debus, R. J., and Babcock, G. T. (2001) *Biochemistry* 40, 2312–2316.
- Deacon, G. B., and Phillips, R. J. (1980) Coord. Chem. Rev. 33, 227-250.
- Nakamoto, K. (1986) Infrared and Raman Spectra of Inorganic and Coordination Compounds, pp 231–233, Wiley, New York.
- Yachandra, V. K., DeRose, V. J., Latimer, M. J., Mukerji, I., Sauer, K., and Klein, M. P. (1993) Science 260, 675–679.
- Latimer, M. J., DeRose, V. J., Mukerji, I., Yachandra, V. K., Sauer, K., and Klein, M. P. (1995) *Biochemistry 34*, 10898– 10909
- Yachandra, V. K., Sauer, K., and Klein, M. P. (1996) Chem. Rev. 96, 2927–2950.
- Latimer, M. J., DeRose, V. J., Yachandra, V. K., Sauer, K., and Klein, M. P. (1998) J. Phys. Chem. B 102, 8257

 –8265.
- Cinco, R. M., Robblee, J. H., Rompel, A., Fernandez, C., Yachandra, V. K., Sauer, K., and Klein, M. P. (1998) *J. Phys. Chem. B* 102, 8248–8256.
- Matysik, J., Nachtegaal, G., van Gorkom, H. J., Hoff, A. J., and de Groot, H. J. M. (2000) *Biochemistry* 39, 6751–6755.

- Riggs-Gelasco, P. J., Mei, R., Ghanotakis, D. F., Yocum, C. F., and Penner-Hahn, J. E. (1996) *J. Am. Chem. Soc.* 118, 2400–2410.
- Booth, P. J., Rutherford, A. W., and Boussac, A. (1996)
 Biochim. Biophys. Acta 1277, 127–134.
- Chu, H.-A., Hillier, W., Law, N. A., Sackett, H., Haymond, S., and Babcock, G. T. (2000) *Biochim. Biophys. Acta* 1459, 528-532.
- Berthold, D. A., Babcock, G. T., and Yocum, C. F. (1981) FEBS Lett. 134, 231–234.
- Ono, T.-A., and Inoue, Y. (1986) Biochim. Biophys. Acta 850, 380–389.
- 31. Tsien, R. Y. (1981) Nature 290, 527-528.
- 32. Miyoshi, N., Hara, K., Kimura, S., Nakanishi, K., and Fukuda, M. (1991) *Photochem. Photobiol.* 53, 415–418.
- Berthomieu, C., Nabedryk, E., Mäntele, W., and Breton, J. (1990) FEBS Lett. 269, 363–367.
- 34. Rutherford, A. W., Crofts, A. R., and Inoue, Y. (1982) *Biochim. Biophys. Acta* 682, 457–465.
- Socrates, G. (1994) Infrared Characteristic Group Frequencies, 2nd ed.; Wiley, Chichester.
- Chu, H.-A., Sackett, H., and Babcock, G. T. (2000) Biochemistry 39, 14371–14376.
- Boussac, A., and Rutherford, A. W. (1988) *Biochemistry* 27, 3476–3483.
- 38. Boussac, A., Zimmermann, J.-L., and Rutherford, A. W. (1989) *Biochemistry* 28, 8984—8989.
- Boussac, A., Zimmermann, J.-L., and Rutherford, A. W. (1990) FEBS Lett. 277, 69-74.
- 40. Zimmermann, J.-L., Boussac, A., and Rutherford, A. W. (1993) *Biochemistry* 32, 4831–4841.
- 41. Smith, J. C., Gonzalez-Vergara, E., and Vincent, J. B (1997) *Inorg. Chim. Acta* 255, 99–103.

BI011216W